- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Boardsen, Scott A (1)
-
Huang, Jia (1)
-
Jian, Lan K (1)
-
Klein, Kristopher (1)
-
Martinović, Mihailo (1)
-
Mostafavi, Parisa (1)
-
Ofman, Leon (1)
-
Paulson, K W (1)
-
Sadykov, Viacheslav M (1)
-
Shankarappa, Niranjana (1)
-
Verniero, Jaye L (1)
-
Yogesh (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Recent in situ observations from Parker Solar Probe (PSP) near perihelia reveal ion beams, temperature anisotropies, and kinetic wave activity. These features are likely linked to solar wind heating and acceleration. During PSP Encounter 17 (at 11.4Rs) on 2023 September 26, the PSP/FIELDS instrument detected enhanced ion-scale wave activity associated with deviations from local thermodynamic equilibrium in ion velocity distribution functions (VDFs) observed by the PSP/Solar Probe Analyzers-Ion. Dense beams (secondary populations) were present in the proton VDFs during this wave activity. Using bi-Maxwellian fits to the proton VDFs, we found that the density of the proton beam population increased during the wave activity and, unexpectedly, surpassed the core population at certain intervals. Interestingly, the wave power was reduced during the intervals when the beam population density exceeded the core density. The drift velocity of the beams decreases from 0.9 to 0.7 of the Alfvén speed, and the proton core shows a higher temperature anisotropy (T⊥/T∥ > 2.5) during these intervals. We conclude that the observations during these intervals are consistent with a reconnection event during a heliospheric current sheet crossing. During this event,α-particle parameters (density, velocity, and temperature anisotropy) remained nearly constant. Using linear analysis, we examined how the proton beam drives instability or wave dissipation. Furthermore, we investigated the nonlinear evolution of ion kinetic instabilities using hybrid kinetic simulations. This study provides direct clues about energy transfer between particles and waves in the young solar wind.more » « lessFree, publicly-accessible full text available June 11, 2026
An official website of the United States government
